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Abstract

The product of traffic flow and the fraction of stopped cars is proposed to
determine the probability P, for car accidents in the Fukui—Ishibashi model
by analysing the necessary conditions of the occurrence of car accidents.
Qualitative and quantitative characteristics of the probability P,. can well be
explained. A strategy for avoiding car accidents is suggested.

PACS numbers: 45.70.Vn, 05.60.—k, 89.40.+k, 05.65.+b

1. Introduction

Recently, cellular automata (CA) models for traffic problems have been extensively studied
[1, 2]. Within the framework of the CA models, the complexities of nonlinear character in
traffic problems can be prescribed and clear physical picture can also be provided [3]. More
importantly, the advantages of these models also show that complicated features observed
under various traffic conditions such as road blocks and hindrances [4], two-level crossings
[5], highway junctions [6], etc can be well described. From the viewpoint of statistical physics,
on the other hand, car traffic represents a far-from-equilibrium driven system whose features
have far-reaching consequences. The analytical study may lead to a profound understanding
of some features of the system or may provide schemes for optimizing the capacity of the
existing traffic network.

More recently, theoretical and numerical results for car accidents in the framework of
the CA models have been reported. With the help of the conditions for the occurrence of car
accidents first proposed by Boccara er al [7], analytical expressions for car accidents have
been provided in the NS model with Vj,,x = 1 in the case of p # 0 [8], and in the Fukui—
Ishibashi (FI) model without considering the stochastic braking [9], respectively. However,
the characteristics of the probability of car accidents in the model with Vi,.x > 1 in the
presence of stochastic braking have not been understood yet, although computer simulations
of the probability for car accidents to occur in the NS model with V;,,x > 1 inthe case of p # 0
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have been offered[10]. In fact, car accidents have always been of concern, because a driver
may likely come across accidents in his or her lifetime and the financial damage from traffic
due to accidents is huge every year. Thus, analytical studies for the occurrence of car accidents
in the case of Vi > 1 and how to effectively avoid the occurrence of car accidents are highly
desirable.

In this paper, we mainly study the probability for car accidents to occur in the FI model. By
analysing the necessary conditions of the occurrence of accidents, we find a universal approach
to study car accidents. The product of the traffic flow and the fraction of stopped cars will
be proposed to determine the value of the probability for the occurrence of car accidents.
These analytical results can predict the probability for car accidents to occur, not only in the
deterministic FI model, but also in the stochastic FI (sFI) model with Vi,.x > 1. Utilizing
these analytic results, we will suggest a scheme to avoid the occurrence of car accidents.

2. Conditions for car accidents to occur

We consider the cellular automata model introduced by Fukui and Ishibashi [11] to describe
single-lane highway traffic. The model consists of a one-dimensional array of L cells with
periodic boundary conditions. Every cell can be either empty or occupied by a car with
velocity v = 0, 1,2, ..., Viax, Where Vi« is the speed limit. Let dr denote the number of
empty cells in front of a car and N the number of cars on the road. The following steps for all
cars are performed in parallel. The first rule is acceleration: if the speed of a car is lower than
Vmax, then it equals the value of the speed limit. The second rule is deceleration due to other
cars: if the speed is larger than dg, then it is reduced to dg. The third rule is randomization:
if the speed of a moving car is the speed limit, then it is decreased by one unit with a braking
probability p. And the fourth rule is that each car is moved forward according to its new speed
determined by the above three rules.

The FI model is one of the basic CA models for describing traffic flow. It is different
from the NS model proposed by Nagel and Schreckenberg [12], in the following two aspects:
(1) the increase of speed of the cars is not gradual and (2) the stochastic delay applies only to
high-speed cars. Obviously, the FI model reduces to the NS model if Vi, = 1.

Because keeping a safe distance is given in the second rule of update, car accidents
do not happen in the basic FI model. However, in real traffic, car accidents often occur if
the conditions for safe driving are not satisfied. More precisely, if a car ahead is moving,
expecting it to be moving at the next time step, a careless driver has a tendency to drive as
fast as possible and increases the safe velocity given in the second rule of update by one unit
with a probability p’. At the next time step, it will arrive at the position of the moving car
ahead. If the moving car ahead is suddenly stopped, collision between the two cars happens.
Let x(i, ) and v(i, t) denote the position and velocity of the ith car at time ¢, respectively. The
three necessary conditions for determining the occurrence of car accidents which have been
proposed by Boccara et al read as follows. The first condition is dg < Viax, which means that
the position of the car ahead can be reached by the car at the next time. The second condition is
v(i+1,t) > 0. Thelastconditionis v(i+1, t+1) = 0, which represents that the moving cari+1
is suddenly stopped at time 7 + 1. These conditions concern states of two neighbourhood cars at
different time steps; therefore they are correlative, both spatial and temporal. When the three
conditions are simultaneously satisfied, the dangerous situation of a car accident occurring
appears. If the careless driver of the ith car increases speed by one unit with probability p’,
a car accident will occur. Obviously, the occurrence of car accidents is proportional to the
occurrence of dangerous situations. The proportional constant is p’. Usually, the probability
per car per time step for car accidents to occur is denoted by P,.. Obviously, P, is proportional
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to the probability p’. As p’ is constant, the accident probability P,. can be scaled by p’. In
computer simulations, car accidents do not really happen. These dangerous situations are
calculated and considered as a signal of the occurrence of car accidents.

In the FI model, there are three basic parameters: the average car density p, the speed
limit Vp,x and the stochastic delay probability p. The probability for the occurrence of car
accidents will be a function of these parameters.

Due to the third condition for car accidents, the probability P, is directly related to
the stopped cars. In the FI model, when the car density p is less than the critical density
Pe = m at which a phase transition from the freely moving phase to the jamming phase
occurs, the average distance between two consecutive cars is larger than Vi,.x. In that case,
all cars can move forward in the case of Vj,,x = 2, therefore no stopped car exists and no car
accident occurs. However, when p > p., some cars become stopped and collisions between
cars happen. Thus, the probability for the occurrence of car accidents exists only when the
car density is larger than the critical density.

However, the stopped cars are not a unique ingredient for determining car accidents.
From the existing results [7-10], we know that the probability is a nonlinear function of
the car density, while the fraction of the stopped cars approximately linearly increases with
increasing car density when the density p is larger than the critical density p.. Thus, besides
the stopped cars, there are other elements that can influence the probability for car accidents.
In the following section, to understand car accidents, we will obtain exact expressions by
analysing the conditions of the occurrence of car accidents and compare them with numerical
results. In the process of simulations, numerical data are obtained from an average over 5000
time steps and 50 ensembles in a system of L = 5 x 10°.

3. Theoretical analysis

We first study the probability for car accidents to occur in the deterministic FI models. The
stochastic braking is neglected, i.e., p = 0. Assume that the average velocity of the cars on
the road is denoted by (V'), and the mean traffic flow by (J). According to the definition of the
mean traffic flow, (J) means that there are on average (J) cars which pass through one cell per
time step. If a cell is occupied by a suddenly stopped car, the probability for the occurrence
of car accidents per time step at the cell is p’(J). Obviously, if the number of stopped cars
on the road is Ny, the probability for car accidents to occur per time step on the road equals
p’(J)Ny. Thus, the probability P,. can be written as

p. = PN
N
= p'no(J)
= p'eo(V) (1)
where nyg = % is the fraction of stopped cars and ¢y = % is the density of the car with the

stationary state. Therefore, P,. is proportional to the product of the mean traffic flow and
the fraction of the stopped cars, also proportional to the product of the mean velocity and the
density of the stopped cars.

The correctness of equation (1) is easily verified. In fact, in the FI model without
considering car accidents, a graph of mean traffic flow as a function of car density, which
is called a fundamental diagram, is extensively studied. Earlier, a site-oriented mean-field
(SOMF) theory and a car-oriented mean-field (COMF) theory [1] were developed for the NS
model, and exact results have been obtained if Vi,.x = 1. Recently, Wang et al developed
the above theories for obtaining the average traffic flow for arbitrary Vi,,x and the braking
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probability in the FI model, by starting from the microscopic update rule of a Boolean variable
related to the occupancy defined on each site [13], and by introducing the concepts of intercar
spacings [14].

Exact results in the deterministic FI model have also been proposed [11, 15]. With the
known results, above the critical density, the fraction of stopped cars and the mean velocity
can be respectively read as (see [11])

no=1-d 2

Vinax

Zd' - 3)

where d is the probability for a site being empty. With the help of equations (2) and (3), the
mean velocity can be rewritten as

max —1 max —1 max max —1
dzd’—(l—no)(z d) (Zm)(Zd’) “)

where n; is the fraction of cars with ve1001ty i, and 1 — no means the total fraction of cars
with positive velocity which equals ’“T n;. Substituting equation (4) into equation (1),
we have

(p Z) (ono) ( > d') ®

where the relation, co = pny, is utilized. Obviously, equation (5) is the analytical expression
obtained from the mean-field theory according to the three constrained conditions of the
occurrence of car accidents first proposed by Boccara et al [7, 9]. The term (,o Z,V v n)
in equation (5) is the probability of a cell being occupied by a moving car, the term png is
the probability of a cell being occupied by a stopped car, and the last term is the probability
of a careless driver arriving at the cell occupied by the car ahead during one time step.
Thus, equation (1) is equivalent to the three constrained conditions for a car accident in the
deterministic FI model.

Utilizing equation (1), qualitative features of the probability P,. can be analysed. Below
the critical density, all cars move with the maximum velocity, and no stopped car exists on
the road. However, above the critical density, the value of (J) linearly decreases from the
maximum value to zero with the increase of p, and in contrast, the value of n increases from
zero to one. As described in equation (1), the probability P, is zero below p. because of no
stopped cars. Above p,, the probability P,. which is determined by the product of (J) and ng
becomes a non-monotonic function of the car density p (see figure 1).

As the speed limit Vi, increases, the value of (J) increases in the low-density region,
then leading to the increase of the probability P,.. In the high-density region, where the
fraction of the stopped cars becomes a larger value and independent of the speed limit, the
traffic flow is irrespective of Viax, thus a scaling relation of the probability P, is expected as
the speed limit increases (see figure 1).

Figures 2 and 3 show the dependence of the probability P, on the fraction of the stopped
cars ng and the traffic flow (J), respectively. As shown in figures 2 and 3, the probability P,
is a nonlinear function of ny or (J), and linear behaviour between P,. and ng or (J) is also
observed in two limit density regions. The features of P,. can be explained as follows. Below
the critical density, there is no stopped car and therefore no accidents, whether the traffic
flow exists or not. Near the critical density, ng assumes a small value, while (J) approaches
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Figure 1. Probability P, (scaled by p’) as a function of car density p in the deterministic
FI model. Solid lines correspond to the analytical results and symbol data are obtained from
numerical simulations.
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Figure 2. The relation of the probability P, (scaled by p’) to the fraction of stopped cars ng in
the deterministic model. Solid lines correspond to analytical results and symbol data are obtained
from simulations.

a maximal value, thus the value of P, is proportional to ng (see figure 2). In the limiting
case p — 1, where the fraction of the stopped cars tends to one, the traffic flow becomes
a stop-and-go wave, so the value of P, is proportional to (J) (see figure 3). Because the
increase of n leads to the decrease of (J), and vice versa, the value of P,. linearly decreases
with the increase of (J) in the high traffic flow region and linearly decreases with the increase
of ny in the high-density region (see figures 2 and 3).

In figure 2, if the value of ny is fixed in a moderate region, the increase of the speed limit
enhances the probability P,. owing to the increase of the traffic flow. In figure 3, if (J) is
larger, the increase of the speed limit also raises the probability P,. because of the increase of
no. Thus, qualitative characteristics of the probability P,. can be explained very well.
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Figure 3. The relation of the probability P, (scaled by p’) to the traffic flow (J) in the
deterministic FI model. Solid lines correspond to analytical results and symbol data are obtained
from simulations.

Quantitatively, we can easily obtain the exact expressions for the fraction of the stopped
cars no by using equations (2) and (3). Above the critical density, ny can be respectively
written as

2—2 for Vpax = 1
ny = %— /%—% for Viax =2 (6)
0 for  Viax — 00

and the traffic flow (J) equals 1 — p for p > p.. With the help of equation (1), the exact
results for the probability P, can be obtained by

(2—%)(1—/)) for Vi = 1
Pe=pr (3= 1-3)a-p  for Ve =2 ™
o1 —p) for Vpax — 00

which corresponds to the results obtained from a mean-field theory [9].
The relations of the accident probability to the fraction of the stopped cars and the traffic
flow are also obtained from equations (1) and (6), respectively:

(d—np) —
% for Vpax =1
P = p MO for Vi =2 ®)
I’lo(l — I’lo) for Vinax —> 00
WIE2D for  Vipax = 1
Pe=p W (3= /a205)  for Vaw=2 ©)
()1 = (1)) for Vi — 00.

The numerical results are in good agreement with expressions (7) and (8), as shown in figures 2
and 3.

Next, we consider the case of the stochastic delay. Unlike the NS model, the stochastic
delay in the sFI model applies only to the cars with maximal velocity. Thus, in the presence



Car accidents determined by stopped cars and traffic flow 10545

0.25
m p=1.0
0201 o 0005
- A p-0.001
v =0.0
<, o015} "
[}
o
010}
0.05|
0.00— L& : :
0.2 04 0.6 0.8 1.0

P

Figure 4. The probability P, (scaled by p’) as a function of the car density p in the sFI model
with Vinax = 2. Solid lines correspond to analytical results and symbol data are obtained from
simulations.

of braking, no correlation exists between the traffic flow and stopped cars. An exception is the
case of Viax = 1, where correlations between the traffic flow and the stopped cars are induced
by the braking. Thus, equation (1) can give exact results of the probability P,. not only in the
deterministic case, but it can also prescribe the probability for car accidents to occur in the
case of the stochastic delay.

Figure 4 shows the dependence of the probability P, on the car density p in the sFI
model with Vj.x = 2. Owing to the lack of explicit expressions for n, theoretical results of
the probability P, are obtained by calculating the product of (J) and n¢. In figure 4, square,
circle, up triangle and down triangle data are results from computer simulations in the case of
p = 0,0.001, 0.005 and 1, respectively, and our analytical results are indicated by solid lines.
Comparison of our prediction for P,. with computer simulations shows excellent agreement.

As shown in figure 4, the relation of the probability P,. to the braking in the FI model
exhibits some unique features which can be well explained with the help of equation (1). In
figure 4, if the value of p is very small, the probability P, is suppressed in the low-density
region, and does not vary in the high-density region with increasing braking probability.
However, if the value of p is larger, the probability P, is the same as that corresponding to
the totally delayed model with Vj,.x — 1 and independent of p.

To well explain the character of the probability P,., we calculate the relation of n( to p,
which is shown in figure 5. When the value of p is very small (for example, near 0.001 in the
case Viax = 2), the slight increase of p enhances the density for the onset of g markedly and
reduces the value of n in the low-density region, due to the stochastic delay applying only to
the cars at the speed limit. But in the high-density region where all cars move forward with
speed smaller than the maximum speed, the value of ng is independent of p. In the opposite
limit case, when the value of p is larger, most cars with maximum speed are delayed, therefore
the distribution of ng behaves in the same way for different delay probabilities and almost
corresponds to the totally delayed model with Vp,,« — 1. For the sFI model, the traffic flow (J)
which can result in car accidents varies only in between two critical densities, corresponding to
the deterministic model with p = 0 and p = 1 as the car density p increases [11], respectively.
Therefore, according to equation (1), when p is smaller the increasing of p leads to a lower
value of P, in the low-density region and causes the onset of P, to move towards the
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Figure 5. The relation of the fraction of stopped cars ng to the car density p in sFI model with
Vinax = 2.

high-density region, but does not change the value of P, in the high-density region; when p is
larger, the distributions of P,. with different values of p shrink into one curve corresponding
to the totally delayed model with Vi — 1.

Now, we discuss strategies for avoiding car accidents. In the basic FI model, there are
three basic parameters: the car density p = %, the braking probability p and the speed limit
Vimax- The probability P,. which is a function of the above three parameters has been studied
previously [7-10]. However, in real traffic systems, only traffic flow and the stopped cars
can be measured. Therefore expression (1) for the probability P, is of practical relevance.
To avoid the occurrence of car accidents, we usually adopt a scheme that the traffic flow is
decreased by traffic lights or that the stopped cars on the road are removed by police cars.
However, the decrease of traffic flow (the stopped cars) may lead to an increase in the fraction
of stopped cars (traffic flow) in some real traffic systems, i.e., the number of cars in the system
remains unchanged. According to expression (1), the decrease of traffic flow or the stopped
cars cannot suppress, but instead enhances the probability of occurrence of car accidents in a
certain situation. Therefore, to effectively avoid the occurrence of car accidents, both traffic
flow and stopped cars must be considered simultaneously.

4. Conclusion

We propose a phenomenological method to study car accidents in the FI model. The probability
P, per car per time step for an accident to occur is proportional to the product of ng and (J).
The conclusion can be proved to be equivalent to the three constrained conditions for the
occurrence of car accidents first proposed by Boccara et al in the deterministic FI model.
The analytical results of the probability P,. in the case of stochastic delays show excellent
agreement with simulations. Therefore, a phenomenological mean-field theory for calculating
the probability P,. becomes very effective in the FI model. Utilizing these analytic results, we
suggest that both traffic flow and the fraction of the stopped cars on the road must be controlled
simultaneously to suppress the occurrence of car accidents.

Utilizing equation (1), features of the probability P,. with the changes of the stochastic
delay have been well explained. In the sFI model, when the value of p is very small, P,
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decreases with the increase of p in the low-density region and is independent of the variety
of p in the high-density region. When the value of p is larger, the distributions of P,
corresponding to different values of p fall into one curve. The present approach provides an
alternative way to study the problems of car accidents analytically. In principle, our approach
can be extended to study other models.
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